10 research outputs found

    Nanorobotics in Medicine: A Systematic Review of Advances, Challenges, and Future Prospects

    Full text link
    Nanorobotics offers an emerging frontier in biomedicine, holding the potential to revolutionize diagnostic and therapeutic applications through its unique capabilities in manipulating biological systems at the nanoscale. Following PRISMA guidelines, a comprehensive literature search was conducted using IEEE Xplore and PubMed databases, resulting in the identification and analysis of a total of 414 papers. The studies were filtered to include only those that addressed both nanorobotics and direct medical applications. Our analysis traces the technology's evolution, highlighting its growing prominence in medicine as evidenced by the increasing number of publications over time. Applications ranged from targeted drug delivery and single-cell manipulation to minimally invasive surgery and biosensing. Despite the promise, limitations such as biocompatibility, precise control, and ethical concerns were also identified. This review aims to offer a thorough overview of the state of nanorobotics in medicine, drawing attention to current challenges and opportunities, and providing directions for future research in this rapidly advancing field

    Nanorobotics in Medicine: A Systematic Review of Advances, Challenges, and Future Prospects with a Focus on Cell Therapy, Invasive Surgery, and Drug Delivery

    No full text
    Nanorobotics offers an emerging frontier in biomedicine, potentially revolutionizing diagnostic and therapeutic applications through its unique capabilities in manipulating biological systems at the nanoscale. Following PRISMA guidelines, a comprehensive literature search was conducted using IEEE Xplore and PubMed databases, identifying and analyzing 414 papers. The studies were filtered to include only those that addressed nanorobotics and direct medical applications. Our analysis traces the technology’s evolution, highlighting its growing prominence in medicine as evidenced by the increasing number of publications. Applications ranged from targeted drug delivery and single-cell manipulation to minimally invasive surgery and biosensing. Despite the promise, limitations such as biocompatibility, precise control, and ethical concerns were also identified. This review aims to offer a thorough overview of nanorobotics in medicine, specifi-cally on niches such as laparoscopic surgery, drug delivery, and cell manipulation, drawing at-tention to current challenges and opportunities and providing directions for future research in this rapidly advancing field

    Data heterogeneity in federated learning with Electronic Health Records: Case studies of risk prediction for acute kidney injury and sepsis diseases in critical care

    No full text
    With the wider availability of healthcare data such as Electronic Health Records (EHR), more and more data-driven based approaches have been proposed to improve the quality-of-care delivery. Predictive modeling, which aims at building computational models for predicting clinical risk, is a popular research topic in healthcare analytics. However, concerns about privacy of healthcare data may hinder the development of effective predictive models that are generalizable because this often requires rich diverse data from multiple clinical institutions. Recently, federated learning (FL) has demonstrated promise in addressing this concern. However, data heterogeneity from different local participating sites may affect prediction performance of federated models. Due to acute kidney injury (AKI) and sepsis’ high prevalence among patients admitted to intensive care units (ICU), the early prediction of these conditions based on AI is an important topic in critical care medicine. In this study, we take AKI and sepsis onset risk prediction in ICU as two examples to explore the impact of data heterogeneity in the FL framework as well as compare performances across frameworks. We built predictive models based on local, pooled, and FL frameworks using EHR data across multiple hospitals. The local framework only used data from each site itself. The pooled framework combined data from all sites. In the FL framework, each local site did not have access to other sites’ data. A model was updated locally, and its parameters were shared to a central aggregator, which was used to update the federated model’s parameters and then subsequently, shared with each site. We found models built within a FL framework outperformed local counterparts. Then, we analyzed variable importance discrepancies across sites and frameworks. Finally, we explored potential sources of the heterogeneity within the EHR data. The different distributions of demographic profiles, medication use, and site information contributed to data heterogeneity. Author summary The availability of a large amount of healthcare data such as Electronic Health Records (EHR) and advances of artificial intelligence (AI) techniques provides opportunities to build predictive models for disease risk prediction. Due to the sensitive nature of healthcare data, it is challenging to collect the data together from different hospitals and train a unified model on the combined data. Recent federated learning (FL) demonstrates promise in addressing the fragmented healthcare data sources with privacy-preservation. However, data heterogeneity in the FL framework may influence prediction performance. Exploring the heterogeneity of data sources would contribute to building accurate disease risk prediction models in FL. In this study, we take acute kidney injury (AKI) and sepsis prediction in intensive care units (ICU) as two examples to explore the effects of data heterogeneity in the FL framework for disease risk prediction using EHR data across multiple hospital sites. In particular, multiple predictive models were built based on local, pooled, and FL frameworks. The local framework only used data from each site itself. The pooled framework combined data from all sites. In the FL framework, each local site did not have access to other sites’ data. We found models built within a FL framework outperformed local counterparts. Then, we analyzed variable importance discrepancies across sites and frameworks. Finally, we explored potential sources of the heterogeneity within EHR data. The different distributions of demographic profiles, medication use, site information such as the type of ICU at admission contributed to data heterogeneity

    Patchwork Learning: A Paradigm Towards Integrative Analysis across Diverse Biomedical Data Sources

    Full text link
    Machine learning (ML) in healthcare presents numerous opportunities for enhancing patient care, population health, and healthcare providers' workflows. However, the real-world clinical and cost benefits remain limited due to challenges in data privacy, heterogeneous data sources, and the inability to fully leverage multiple data modalities. In this perspective paper, we introduce "patchwork learning" (PL), a novel paradigm that addresses these limitations by integrating information from disparate datasets composed of different data modalities (e.g., clinical free-text, medical images, omics) and distributed across separate and secure sites. PL allows the simultaneous utilization of complementary data sources while preserving data privacy, enabling the development of more holistic and generalizable ML models. We present the concept of patchwork learning and its current implementations in healthcare, exploring the potential opportunities and applicable data sources for addressing various healthcare challenges. PL leverages bridging modalities or overlapping feature spaces across sites to facilitate information sharing and impute missing data, thereby addressing related prediction tasks. We discuss the challenges associated with PL, many of which are shared by federated and multimodal learning, and provide recommendations for future research in this field. By offering a more comprehensive approach to healthcare data integration, patchwork learning has the potential to revolutionize the clinical applicability of ML models. This paradigm promises to strike a balance between personalization and generalizability, ultimately enhancing patient experiences, improving population health, and optimizing healthcare providers' workflows

    Web-Based Social Networks of Individuals With Adverse Childhood Experiences: Quantitative Study

    No full text
    BackgroundAdverse childhood experiences (ACEs), which include abuse and neglect and various household challenges such as exposure to intimate partner violence and substance use in the home, can have negative impacts on the lifelong health of affected individuals. Among various strategies for mitigating the adverse effects of ACEs is to enhance connectedness and social support for those who have experienced them. However, how the social networks of those who experienced ACEs differ from the social networks of those who did not is poorly understood. ObjectiveIn this study, we used Reddit and Twitter data to investigate and compare social networks between individuals with and without ACE exposure. MethodsWe first used a neural network classifier to identify the presence or absence of public ACE disclosures in social media posts. We then analyzed egocentric social networks comparing individuals with self-reported ACEs with those with no reported history. ResultsWe found that, although individuals reporting ACEs had fewer total followers in web-based social networks, they had higher reciprocity in following behavior (ie, mutual following with other users), a higher tendency to follow and be followed by other individuals with ACEs, and a higher tendency to follow back individuals with ACEs rather than individuals without ACEs. ConclusionsThese results imply that individuals with ACEs may try to actively connect with others who have similar previous traumatic experiences as a positive connection and coping strategy. Supportive interpersonal connections on the web for individuals with ACEs appear to be a prevalent behavior and may be a way to enhance social connectedness and resilience in those who have experienced ACEs

    Biomedical discovery through the integrative biomedical knowledge hub (iBKH)

    No full text
    Summary: The abundance of biomedical knowledge gained from biological experiments and clinical practices is an invaluable resource for biomedicine. The emerging biomedical knowledge graphs (BKGs) provide an efficient and effective way to manage the abundant knowledge in biomedical and life science. In this study, we created a comprehensive BKG called the integrative Biomedical Knowledge Hub (iBKH) by harmonizing and integrating information from diverse biomedical resources. To make iBKH easily accessible for biomedical research, we developed a web-based, user-friendly graphical portal that allows fast and interactive knowledge retrieval. Additionally, we also implemented an efficient and scalable graph learning pipeline for discovering novel biomedical knowledge in iBKH. As a proof of concept, we performed our iBKH-based method for computational in-silico drug repurposing for Alzheimer’s disease. The iBKH is publicly available

    A global metagenomic map of urban microbiomes and antimicrobial resistance

    No full text
    We present a global atlas of 4,728 metagenomic samples from mass-transit systems in 60 cities over 3 years, representing the first systematic, worldwide catalog of the urban microbial ecosystem. This atlas provides an annotated, geospatial profile of microbial strains, functional characteristics, antimicrobial resistance (AMR) markers, and genetic elements, including 10,928 viruses, 1,302 bacteria, 2 archaea, and 838,532 CRISPR arrays not found in reference databases. We identified 4,246 known species of urban microorganisms and a consistent set of 31 species found in 97% of samples that were distinct from human commensal organisms. Profiles of AMR genes varied widely in type and density across cities. Cities showed distinct microbial taxonomic signatures that were driven by climate and geographic differences. These results constitute a high-resolution global metagenomic atlas that enables discovery of organisms and genes, highlights potential public health and forensic applications, and provides a culture-independent view of AMR burden in cities.Funding: the Tri-I Program in Computational Biology and Medicine (CBM) funded by NIH grant 1T32GM083937; GitHub; Philip Blood and the Extreme Science and Engineering Discovery Environment (XSEDE), supported by NSF grant number ACI-1548562 and NSF award number ACI-1445606; NASA (NNX14AH50G, NNX17AB26G), the NIH (R01AI151059, R25EB020393, R21AI129851, R35GM138152, U01DA053941); STARR Foundation (I13- 0052); LLS (MCL7001-18, LLS 9238-16, LLS-MCL7001-18); the NSF (1840275); the Bill and Melinda Gates Foundation (OPP1151054); the Alfred P. Sloan Foundation (G-2015-13964); Swiss National Science Foundation grant number 407540_167331; NIH award number UL1TR000457; the US Department of Energy Joint Genome Institute under contract number DE-AC02-05CH11231; the National Energy Research Scientific Computing Center, supported by the Office of Science of the US Department of Energy; Stockholm Health Authority grant SLL 20160933; the Institut Pasteur Korea; an NRF Korea grant (NRF-2014K1A4A7A01074645, 2017M3A9G6068246); the CONICYT Fondecyt Iniciación grants 11140666 and 11160905; Keio University Funds for Individual Research; funds from the Yamagata prefectural government and the city of Tsuruoka; JSPS KAKENHI grant number 20K10436; the bilateral AT-UA collaboration fund (WTZ:UA 02/2019; Ministry of Education and Science of Ukraine, UA:M/84-2019, M/126-2020); Kyiv Academic Univeristy; Ministry of Education and Science of Ukraine project numbers 0118U100290 and 0120U101734; Centro de Excelencia Severo Ochoa 2013–2017; the CERCA Programme / Generalitat de Catalunya; the CRG-Novartis-Africa mobility program 2016; research funds from National Cheng Kung University and the Ministry of Science and Technology; Taiwan (MOST grant number 106-2321-B-006-016); we thank all the volunteers who made sampling NYC possible, Minciencias (project no. 639677758300), CNPq (EDN - 309973/2015-5), the Open Research Fund of Key Laboratory of Advanced Theory and Application in Statistics and Data Science – MOE, ECNU, the Research Grants Council of Hong Kong through project 11215017, National Key RD Project of China (2018YFE0201603), and Shanghai Municipal Science and Technology Major Project (2017SHZDZX01) (L.S.
    corecore